MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

SECTION - B (Marks 48)

Q. 2 Solve the following Questions.

(12 x 4 = 48)

(i)	Simplify $z = \frac{(4-6i)(2+i)}{(3+i)(1+i)}$ in the form $a+ib$ where $i = \sqrt{-1}$ and find the value of $ z $.	04	OR	Find the value of x , if $\begin{bmatrix} x+1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & x+9 \end{bmatrix}$ is a singular matrix.	04
(ii)	Solve the system of linear equations. $ (2+3i)x + (1-i)y - 11 = 0 $ $ (1+i)x + (2-3i)y - 11 = 0 $	04	OR	A particle acted by constant force $2\underline{i} + \underline{j}, \underline{i} + 2\underline{j}, \underline{i} + \underline{j} + \underline{k}$ and $3\underline{i} - 2\underline{j} + 4\underline{k}$ is displaced from point $P(0,-2,-3)$ to point $Q(2,0,6)$. Find the work done.	04
(iii)	If $A = \begin{bmatrix} 7 & 8 & 6 \\ 6 & 7 & 5 \\ 5 & 6 & 4 \end{bmatrix}$, then show that $(A - A^t)$ is skew-symmetric.	04	OR	Find number of different arrangements that can be made from the letters of word PARALELLOGRAM (using all) and how many of these begin with PE and end with OM?	04
(iv)	Insert four G.Ms between 7 and 1701	04	OR	Find the volume of a parallelepiped with adjacent edges defined by vertices. $A(0,1,2)$, $B(1,2,1)$, $C(5,5,6)$ and $D(3,3,1)$	04
(v)	The 11 th and 19 th terms of an AP are 42 and 74 respectively. Find the sum of first 20 terms of AP.	04	OR	Sum to n-terms the series $1.2 + 2.3 + 3.4 + \dots$	04
(vi)	Verify that $3+7+11++(4n-1)=n(2n+1)$ by using the mathematical induction.	04	OR	Find the values of ' n ' and ' r ' if n $P_{r} = 15120$ and $^{n}C_{r} = 126$	04
(vii)	In an HP, 8^{th} term is $\frac{2}{5}$ and 17^{th} term is $\frac{2}{11}$. Find 35^{th} term of the HP.	04	OR	For a real valued function $f(x) = \frac{3x-2}{x+4}$, find $f^{-1}(x)$ and determine its domain and range.	04
(viii)	In a single throw of two fair dice, the number of dots on the top are added. Find the probability of getting a sum of 7 or 9 .	04	OR	Without drawing, guess the graph of $y = \cos \frac{1}{6}\theta$. Also find its period, frequency and amplitude.	04
(ix)	If $\sec\alpha=\frac{5}{4}, \sec\beta=\frac{13}{5}$ with $\frac{3\pi}{2}<\alpha<2\pi$ and $\frac{3\pi}{2}<\beta<2\pi \text{ , then find the value of }\tan\left(\alpha+\beta\right).$	04	OR	Solve triangle $\ ABC$ with $\ a=15, \ c=20$ and $\ \beta=60^\circ$ using usual notations.	04
(x)	Verify that $\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta = 4\cos\theta \cos 2\theta \cos 6\theta$	04	OR	Find radii ('R' and 'r') of circumscribed and inscribed circles of triangle ABC with side measures $a = 4cm$, $b = 7cm$ and $c = 9cm$ (use usual notations).	04
(xi)	Verify that $2r = 8R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ (use usual notations).	04	OR	Verify $\sin^4\theta = \frac{1}{8} (3 + \cos 4\theta - 4\cos 2\theta)$	04
(xii)	Verify that $ \left(\sin^{-1} \frac{1}{\sqrt{5}} + \sin^{-1} \frac{1}{\sqrt{10}} \right) + \left(\cos^{-1} \frac{2}{\sqrt{5}} + \cos^{-1} \frac{3}{\sqrt{10}} \right) = \frac{\pi}{2} $	04	OR	Find equation of a parabola $y = ax^2 + bx + c \ (\forall a,b,c \in R)$ that cuts <i>x</i> -axis at points $(-5,0),(4,0)$ and passes through a point $(1,18)$	04

SECTION – C (Marks 32)

Note: Solve the following Questions.

(4 x 8 = 32)

(Use of graph paper is not necessary. Candidates can make their own grid on answer book)

Q.3	Find inverse of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$	08	OR	Find a vector of magnitude 14 units orthogonal to vectors $\underline{a}=-\underline{i}+3\underline{j}$ and $\underline{b}=\underline{i}+2\underline{k}$ both. Also find angle between the vectors \underline{a} and \underline{b} .	08
Q.4	Use Gauss Jordan method to solve the system of linear equations. $-x + y + 2z = 2$; $3x - y + z = 6$; $-x + 3y + 4z = 4$	08	OR	Find the point of intersection graphically from the following functions. $f(x) = -x + 4$; $g(x) = x^2 - 3x + 1$	08
Q.5	If $y = \frac{1}{(1!)2} \left(\frac{1}{4}\right) + \frac{1.3}{(2!)4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1.3.5}{(3!)8} \left(\frac{1}{4}\right)^3 + \dots$, then prove that $3y^2 + 6y - 1 = 0$	08	OR	Find general solution of a trigonometric equation $\cos 2x = \sin x$	08
Q.6	Find maximum and minimum values of a function $f(x,y)=3x+2y$ subject to the constraints $x+2y \le 8$, $5x-2y \le 10$, $7x-5y \ge -35$, $x \ge 0$, $y \ge 0$	08	OR	Sketch the graph of $y = \sin \frac{\theta}{2}$; $-\pi \le \theta \le \pi$	08